Published June 14, 2010
| Version v1
Conference paper
SPECTRAL ANALYSIS AND UNSUPERVISED SVM CLASSIFICATION FOR SKIN HYPER-PIGMENTATION CLASSIFICATION
- Others:
- Inverse problems in earth monitoring (ARIANA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- GALDERMA R&D ; GALDERMA R&D
Description
Data reduction procedures and classification via support vector machines (SVMs) are often associated with multi or hyperspectral image analysis. In this paper, we propose an automatic method with these two schemes in order to perform a classification of skin hyper-pigmentation on multi-spectral images. We propose a spectral analysis method to partition the spectrum as a tool for data reduction, implemented by projection pursuit. Once the data is reduced, an SVM is used to differentiate the pathological from the healthy areas. As SVM is a supervised classification method, we propose a spatial criterion for spectral analysis in order to perform automatic learning.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00495560
- URN
- urn:oai:HAL:inria-00495560v1
- Origin repository
- UNICA