Nonlinear regularization techniques for seismic tomography
- Creators
- Loris, I.
- Douma, H.
- Nolet, G.
- Daubechies, I.
- Regone, C.
- Others:
- Mathematics Department ; Vrije Universiteit Brussel (VUB)
- Department of Geosciences [Princeton] ; Princeton University
- Géoazur (GEOAZUR 6526) ; Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Program in Applied and Computational Mathematics ; Princeton University
- BP America Inc. ; BP America Inc
Description
The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, ℓ2 penalties are compared to so-called sparsity promoting ℓ1 and ℓ0 penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an ℓ2 norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer ℓ1 damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple ℓ2 minimization ('Tikhonov regularization') which should be avoided. In some of our examples, the ℓ0 method produced notable artifacts. In addition we show how nonlinear ℓ1 methods for finding sparse models can be competitive in speed with the widely used ℓ2 methods, certainly under noisy conditions, so that there is no need to shun ℓ1 penalizations.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00435890
- URN
- urn:oai:HAL:hal-00435890v1
- Origin repository
- UNICA