Post hoc confidence bounds on false positives using reference families
- Others:
- Institut für Mathematik [Potsdam] ; University of Potsdam = Universität Potsdam
- Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut de Mathématiques de Toulouse UMR5219 (IMT) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- ANR-16-CE40-0019,SansSouci,Approches post hoc pour les tests multiples à grande échelle(2016)
- ANR-17-CE40-0001,BASICS,Bayésien non-paramétrique, quantification de l'incertitude et structures aléatoires(2017)
Description
We follow a post-hoc, "user-agnostic" approach to false discovery control in a large-scale multiple testing framework, as introduced by Genovese and Wasserman (2006), Goeman and Solari (2011): the statistical guarantee on the number of correct rejections must hold for any set of candidate items, possibly selected by the user after having seen the data. To this end, we introduce a novel point of view based on a family of reference rejection sets and a suitable criterion, namely the joint-family-wise-error rate over that family (JER for short). First, we establish how to derive post hoc bounds froma given JER control and analyze some general properties of this approach. We then develop procedures for controlling the JER in the case where reference regions are p-value level sets. These procedures adapt to dependencies and to the unknown quantity of signal (via a step-downprinciple). We also show interesting connections to confidence envelopes of Meinshausen (2006); Genovese and Wasserman (2006), the closed testing based approach of Goeman and Solari (2011) and to the higher criticism of Donoho and Jin (2004). Our theoretical statements are supported by numerical experiments.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01483585
- URN
- urn:oai:HAL:hal-01483585v5
- Origin repository
- UNICA