Published May 4, 2014
| Version v1
Conference paper
Detection of nonlinear mixtures using Gaussian processes: Application to hyperspectral imaging
Contributors
Others:
- Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC)
- CoMputational imagINg anD viSion (IRIT-MINDS) ; Institut de recherche en informatique de Toulouse (IRIT) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Toulouse Mind & Brain Institut (TMBI) ; Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Toulouse Mind & Brain Institut (TMBI) ; Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées
- Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées
- Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
Description
This paper investigates the use of Gaussian processes to detect non-linearly mixed pixels in hyperspectral images. The proposed technique is independent of nonlinear mixing mechanism, and therefore is not restricted to any prescribed nonlinear mixing model. The observed reflectances are estimated using both the least squares method and a Gaussian process. The fitting errors of the two approaches are combined in a test statistics for which it is possible to estimate a detection threshold given a required probability of false alarm. The proposed detector is compared to a robust nonlinearity detector recently proposed using synthetic data and is shown to provide a better detection performance. The new detector is also tested on a real hyperspectral image.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01484999
- URN
- urn:oai:HAL:hal-01484999v1
Origin repository
- Origin repository
- UNICA