Brief Announcement: Distributed Exclusive and Perpetual Tree Searching
- Creators
- Blin, Lélia
- Burman, Janna
- Nisse, Nicolas
- Others:
- Université d'Évry-Val-d'Essonne (UEVE)
- Networks and Performance Analysis (NPA) ; Laboratoire d'Informatique de Paris 6 (LIP6) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Global parallel and distributed computing (GRAND-LARGE) ; Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Informatique Fondamentale de Lille (LIFL) ; Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- European Project: 258307,EC:FP7:ICT,FP7-ICT-2009-5,EULER(2010)
Description
We tackle a practical version of the well known {\it graph searching} problem, where a team of robots aims at capturing an intruder in a graph. The robots and the intruder move along the edges of the graph. The intruder is invisible, arbitrary fast, and omniscient. It is caught whenever it stands on a node occupied by a robot, and cannot escape to a neighboring node. We study graph searching in the CORDA model of mobile computing: robots are asynchronous, and they perform cycles of {\it Look-Compute-Move} actions. Moreover, motivated by physical constraints, we consider the \emph{exclusive} property, stating that no two or more robots can occupy the same node at the same time. In addition, we assume that the network and the robots are anonymous. Finally, robots are \emph{oblivious}, i.e., each robot performs its move actions based only on its current ''vision'' of the positions of the other robots. Our objective is to characterize, for a graph $G$, the set of integers $k$ such that graph searching can be achieved by a team of $k$ robots starting from \emph{any} $k$ distinct nodes in $G$. Our main result consists in a full characterization of this set, for any asymmetric tree. Towards providing a characterization for all trees, including trees with non-trivial automorphisms, we have also provides a set of positive and negative results, including a full characterization for any line. All our positive results are based on the design of algorithms enabling \emph{perpetual} graph searching to be achieved with the desired number of robots.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-00741982
- URN
- urn:oai:HAL:hal-00741982v1
- Origin repository
- UNICA