On the Complexity of Computing Treebreadth
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Veli Mäkinen
- Simon J. Puglisi
- Leena Salmela
- ANR-13-BS02-0007,Stint,Structures Interdites(2013)
- ANR-11-LABX-0031,UCN@SOPHIA,Réseau orienté utilisateur(2011)
Description
During the last decade, metric properties of the bags of tree-decompositions of graphs have been studied. Roughly, the length and the breadth of a tree-decomposition are the maximum diameter and radius of its bags respectively. The treelength and the treebreadth of a graph are the minimum length and breadth of its tree-decompositions respectively. Pathlength and pathbreadth are defined similarly for path-decompositions. In this paper, we answer open questions of [Dragan and Köhler , Algorithmica 2014] and [Dragan, Köhler and Leitert, SWAT 2014] about the computational complexity of treebreadth, pathbreadth and pathlength. Namely, we prove that computing these graph invariants is NP-hard. We further investigate graphs with treebreadth one, i.e., graphs that admit a tree-decomposition where each bag has a dominating vertex. We show that it is NP-complete to decide whether a graph belongs to this class. We then prove some structural properties of such graphs which allows us to design polynomial-time algorithms to decide whether a bipartite graph, resp., a planar graph, has treebreadth one.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01354996
- URN
- urn:oai:HAL:hal-01354996v1
- Origin repository
- UNICA