Published June 4, 2015
| Version v1
Publication
Local Signatures using Persistence Diagrams
Contributors
Others:
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
In this article, we address the problem of devising signatures using the framework of persistent homology.Considering a compact length space with curvature bounded above, we build, either for every point or for the shape itself, a topological signature that is provably stable to perturbations of the space in the Gromov-Hausdorff distance. This signature has been used in 3D shape analysis tasks, such as shape segmentation and matching. Here, we provide general statements and formal proofs of stability for this signature.
Additional details
Identifiers
- URL
- https://inria.hal.science/hal-01159297
- URN
- urn:oai:HAL:hal-01159297v2
Origin repository
- Origin repository
- UNICA