Published January 2008 | Version v1
Journal article

Root-knot nematodes manipulate plant cell functions during a compatible interaction

Description

Sedentary endoparasitic nematodes are root parasites that interact with their hosts in a remarkable way. These obligate biotrophic pathogens establish an intimate relationship with their host plants, inducing the redifferentiation of root cells into specialized feeding cells. The successful establishment of feeding cells is essential for nematode development. Root-knot nematodes, of the genus Meloidogyne, have evolved strategies enabling them to induce feeding cell formation in thousands of plant species, probably by manipulating fundamental elements of plant cell development. Feeding cells enlarge and are converted into multinucleate giant cells through synchronous nuclear divisions without cell division. Fully differentiated giant cells may contain more than a hundred polyploid nuclei that may have undergone extensive endoreduplication. Hyperplasia and hypertrophy of the surrounding cells lead to the formation of the typical root gall. Giant cell formation requires extensive changes to gene expression. The induction of feeding cells remains poorly understood, but it is thought that effectors secreted by the nematode play a key role in parasitism, with potential direct effects on recipient host cells. In this review, we focus on the most recent investigations of the molecular basis of the plant–root-knot nematode interaction. Recently, microarray technology has been used to study the plant response to Meloidogyne spp. infection. Such a genome-wide expression profiling provides a global view of transcriptional changes, especially for genes involved in cell wall, transport processes and plant defense responses during giant cell formation. The identification of nematode-responsive plant genes constitutes a major step toward understanding how root-knot nematodes dramatically alter root development to induce and maintain giant cells. The characterization of nematode secretions as parasitism effectors and the development of RNAi technology should improve our understanding of the molecular events and regulatory mechanisms involved in plant parasitism. Finally, Meloidogyne genome sequences should provide further insight into plant–root-knot nematode interactions.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023