Importance weighted directed graph variational auto-encoder for block modelling of complex networks
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Culture et Environnements, Préhistoire, Antiquité, Moyen-Age (CEPAM) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Laboratoire de Mathématiques Blaise Pascal (LMBP) ; Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
- Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l'Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
- ANR-23-IACL-0001
Description
This paper addresses the fundamental challenges of jointly performing node clustering and representation learning in directed and valued graphs, which need both global and local network structures to be captured. While these two tasks are highly interdependent, they are often treated separately in existing works. We propose the deep zero-inflated latent position block model (Deep-ZLPBM) in the context of directed and valued networks characterized by non-symmetric adjacency matrices with positive integer entries. Our approach leverages a variational autoencoder (VAE) framework, combining a directed graph neural network (DirGNN) encoder designed to handle directed edges and a zero-inflated Poisson (ZIP) block modelling decoder to model sparse, integer-weighted interactions. Recognizing the limitations of the standard evidence lower bound (ELBO) in VAEs, we explore the importance weighted ELBO (iw-ELBO), a tighter bound on the marginal log-likelihood optimized via gradient ascent, to enhance inference. Extensive experiments on synthetic datasets demonstrate that iw-ELBO optimization yields significant performance gains. Moreover, our results validate that Deep-ZLPBM effectively models complex network structures, providing interpretable partial memberships and insightful visualizations for directed, valued graphs.
→ Use footnote for providing further information about author (webpage, alternative address)-not for acknowledging funding agencies.
Preprint. Under review.
Additional details
Identifiers
- URL
- https://hal.science/hal-05077099
- URN
- urn:oai:HAL:hal-05077099v1
Origin repository
- Origin repository
- UNICA