Boosting local consistency algorithms over oating-point numbers
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe CEP ; Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-10-SEGI-0013,Aeolus,Maîtriser la complexité du Cloud Computing(2010)
- ANR-11-INSE-0004,VACSIM,Validation de la commande des systèmes critiques par couplage simulation et méthodes d'analyse formelle(2011)
Description
Solving constraints over oating-point numbers is a critical issue in numerous applications notably in program verication. Capa-bilities of ltering algorithms over the oating-point numbers (F) have been so far limited to 2b-consistency and its derivatives. Though safe, such ltering techniques suer from the well known pathological prob-lems of local consistencies, e.g., inability to eciently handle multiple occurrences of the variables. These limitations also have their origins in the strongly restricted oating-point arithmetic. To circumvent the poor properties of oating-point arithmetic, we propose in this paper a new ltering algorithm, called FPLP, which relies on various relaxations over the real numbers of the problem over F. Safe bounds of the domains are computed with a mixed integer linear programming solver (MILP) on safe linearizations of these relaxations. Preliminary experiments on a relevant set of benchmarks are promising and show that this approach can be eective for boosting local consistency algorithms over F.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01099514
- URN
- urn:oai:HAL:hal-01099514v1
- Origin repository
- UNICA