Published July 2009
| Version v1
Journal article
Gromov-Hausdorff Stable Signatures for Shapes using Persistence
Contributors
Others:
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Computer Science Department [Stanford] ; Stanford University
- Department of Mathematics [Stanford] ; Stanford University
Description
We introduce a family of signatures for finite metric spaces, possibly endowed with real valued functions, based on the persistence diagrams of suitable filtrations built on top of these spaces. We prove the stability of our signatures under Gromov-Hausdorff perturbations of the spaces. We also extend these results to metric spaces equipped with measures. Our signatures are well-suited for the study of unstructured point cloud data, which we illustrate through an application in shape classification.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-00772413
- URN
- urn:oai:HAL:hal-00772413v1
Origin repository
- Origin repository
- UNICA