Published July 2009 | Version v1
Journal article

Gromov-Hausdorff Stable Signatures for Shapes using Persistence

Description

We introduce a family of signatures for finite metric spaces, possibly endowed with real valued functions, based on the persistence diagrams of suitable filtrations built on top of these spaces. We prove the stability of our signatures under Gromov-Hausdorff perturbations of the spaces. We also extend these results to metric spaces equipped with measures. Our signatures are well-suited for the study of unstructured point cloud data, which we illustrate through an application in shape classification.

Abstract

International audience

Additional details

Identifiers

URL
https://inria.hal.science/hal-00772413
URN
urn:oai:HAL:hal-00772413v1

Origin repository

Origin repository
UNICA