Radio AGN in nearby dwarf galaxies: the important role of AGN in dwarf galaxy evolution
- Others:
- Laboratoire d'Astrophysique de Marseille (LAM) ; Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut d'Astrophysique de Paris (IAP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Description
We combine deep optical and radio data, from the Hyper Suprime-Cam and the Low-Frequency Array (LOFAR), respectively, to study 78 radio active galactic nuclei (AGN) in nearby (z < 0.5) dwarf galaxies. Comparison to a control sample, matched in stellar mass and redshift, indicates that the AGN and controls reside in similar environments, show similar star formation rates (which trace gas availability) and exhibit a comparable incidence of tidal features (which indicate recent interactions). We explore the AGN properties by combining the predicted gas conditions in dwarfs from a cosmological hydrodynamical simulation with a Monte Carlo suite of simulated radio sources, based on a semi-analytical model for radio-galaxy evolution. In the subset of LOFAR-detectable simulated sources, which have a similar distribution of radio luminosities as our observed AGN, the median jet powers, ages, and accretion rates are ∼10^35 W, ∼5 Myr, and ∼10^−3.4 M_⊙ yr^−1, respectively. The median mechanical energy output of these sources is ∼100 times larger than the median binding energy expected in dwarf gas reservoirs, making AGN feedback plausible. Since special circumstances (in terms of environment, gas availability, and interactions) are not necessary for the presence of AGN, and the central gas masses are predicted to be an order of magnitude larger than that required to fuel the AGN, AGN triggering in dwarfs is likely to be stochastic and a common phenomenon. Together with the plausibility of energetic feedback, this suggests that AGN could be important drivers of dwarf galaxy evolution, as is the case in massive galaxies.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03564490
- URN
- urn:oai:HAL:hal-03564490v1
- Origin repository
- UNICA