Published 2013
| Version v1
Journal article
Kinetic Monte Carlo simulations of the growth of silicon germanium pyramids
- Others:
- Institut des Nanosciences de Paris (INSP) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Institut Non Linéaire de Nice Sophia-Antipolis (INLN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
We investigate the nucleation and growth of anisotropic and strained quantum dots in heteroepitaxy by means of kinetic Monte Carlo simulations. Surface energy anisotropy is introduced in order to depict Ge-like dots with (105) facets growing on a Si (100) substrate. Three dimensional islands, mainly in the form of square-base pyramids, are reported and their coarsening is found to be interrupted during annealing. The resulting island density follows the scaling law rho similar to (D/F)(-alpha) with alpha similar or equal to 0.6 as a function of the diffusion D to flux F ratio. The island size distribution follows the scaling law resulting from the assumption of a single length scale. DOI: 10.1103/PhysRevB.87.125310
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01238962
- URN
- urn:oai:HAL:hal-01238962v1
- Origin repository
- UNICA