Published July 2, 2024
| Version v1
Publication
Precision traffic monitoring: Leveraging distributed acoustic sensing and deep neural networks
Contributors
Others:
- Université Côte d'Azur (UniCA)
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- Centre National de la Recherche Scientifique (CNRS)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
Distributed Acoustic Sensing (DAS) has recently emerged as a promising technology for traffic monitoring. It transforms standard fiber-optic telecommunication cables into an array of vibration sensors capable of capturing vehicle-induced subsurface deformation with high spatio-temporal resolution. In this study, we propose a deep learning framework for the detection and velocity estimation of traffic flow. Our neural network based model yields accurate and well-resolved vehicle localization and speed tracking, outperforming off-the-shelf Dynamic Time Warping based solutions while achieving an order of magnitude faster processing time. A multi-day comparison with dedicated sensors installed along an urban highway shows a strong correlation, even under dense traffic conditions.
Additional details
Identifiers
- URL
- https://hal.science/hal-04632372
- URN
- urn:oai:HAL:hal-04632372v1
Origin repository
- Origin repository
- UNICA