A Temperature Phantom to Probe the Ensemble Average Propagator Asymmetry: an In-Silico Study
- Others:
- Computational Imaging of the Central Nervous System (ATHENA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- École Polytechnique de Montréal (EPM)
- McGill University = Université McGill [Montréal, Canada]
- Olea Medical [La Ciotat]
Description
The detection and quantification of asymmetry in the Ensemble Average Propagator (EAP) obtained from the Diffusion-Weighted (DW) signal has been shown only for theoretical models. EAP asymmetry appears for instance when diffusion occurs within fibers with particular geometries. However the quan-tification of EAP asymmetry corresponding to such geometries in controlled experimental conditions is limited by the difficulty of designing fiber geometries on a micrometer scale. To overcome this limitation we propose to adopt an alternative paradigm to induce asymmetry in the EAP. We apply a temperature gradient to a spinal cord tract to induce a corresponding diffusivity profile that alters locally the diffusion process to be asymmetric. We simulate the EAP and the corresponding complex DW signal in such a scenario. We quantify EAP asymmetry and investigate its relationship with the applied experimental conditions and with the acquisition parameters of a Pulsed Gradient Spin-Echo sequence. Results show that EAP asymmetry is sensible to the applied temperature-induced diffusivity gradient and that its quantification is influenced by the selected acquisition parameters.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01218143
- URN
- urn:oai:HAL:hal-01218143v1
- Origin repository
- UNICA