Published 2014
| Version v1
Journal article
ON THE HYPERBOLICITY OF RANDOM GRAPHS
- Creators
- Mitsche, Dieter
- Pralat, Pawel
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Ryerson University [Toronto]
Description
Let G = (V, E) be a connected graph with the usual (graph) distance metric d . Introduced by Gromov, G is δ-hyperbolic if for every four vertices u, v, x, y ∈ V , the two largest values of the three sums d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x) differ by at most 2δ. In this paper, we determine precisely the value of this hyperbolicity for most binomial random graphs.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01143661
- URN
- urn:oai:HAL:hal-01143661v1
- Origin repository
- UNICA