The Eulerian stretch of a digraph and the ending guarantee of a convergence routing
- Others:
- Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE (OPALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Software Tools for Telecommunications and Distributed Systems (RESEDAS) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Citation
Description
In this paper, we focus on convergence packet routing techniques in a network, obtained from an Eulerian routing in the digraph modeling the target network. Given an Eulerian circuit $\cal C$ in a digraph $G$, we consider the maximal number $diamW_{\cal C}$ of arcs that a packet has to follow on $\cal C$ from its origin to its destination (we talk about the {\em ending guarantee} of the routing). We consider the {\em Eulerian diameter of $G$} as defined by ${\cal E}(G)=\min\limits_{{\cal C}? Eul(G)} diamW_{\cal C}$, where $Eul(G)$ is the set of all the Eulerian circuits in $G$. After giving a preliminary result about the complexity of finding ${\cal E}(G)$ for any digraph $G$, we give some lower and upper bounds of this parameter. We conclude by giving some families of digraphs having good Eulerian diameter.
Abstract
Rapport interne.
Additional details
- URL
- https://inria.hal.science/inria-00099331
- URN
- urn:oai:HAL:inria-00099331v1
- Origin repository
- UNICA