Observational constraint on the radius and oblateness of the lunar core-mantle boundary
- Others:
- Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Description
Lunar laser ranging (LLR) data and Apollo seismic data analyses, revealed independent evidence for the presence of a fluid lunar core. However, the size of the lunar fluid core remained uncertain by $\pm55$ km (encompassing two contrasting 2011 Apollo seismic data analyses). Here we show that a new description of the lunar interior's dynamical model provides a determination of the radius and geometry of the lunar core-mantle boundary (CMB) from the LLR observations. We compare the present-day lunar core oblateness obtained from LLR analysis with the expected hydrostatic model values, over a range of previously expected CMB radii. The findings suggest a core oblateness ($f_c=(2.2\pm0.6)\times10^{-4}$) that satisfies the assumption of hydrostatic equilibrium over a tight range of lunar CMB radii ($\mathcal{R}_{CMB}=381\pm12$ km). Our estimates of a presently-relaxed lunar CMB translates to a core mass fraction in the range of $1.59-1.77\%$ with a present-day Free Core Nutation (FCN) within $(367\pm100)$ years.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02088588
- URN
- urn:oai:HAL:hal-02088588v1
- Origin repository
- UNICA