Published September 27, 2006
| Version v1
Publication
L2 formulation of multidimensional scalar conservation laws
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut Wolfgang Döblin (IWD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We show that Kruzhkov's theory of entropy solutions to multidimensional scalar conservation laws can be entirely recast in L2 and fits into the general theory of maximal monotone operators in Hilbert spaces. Our approach is based on a combination of level-set, kinetic and transport-collapse approximations, in the spirit of previous works by Giga, Miyakawa, Osher, Tsai and the author.
Additional details
Identifiers
- URL
- https://hal.science/hal-00101596
- URN
- urn:oai:HAL:hal-00101596v1
Origin repository
- Origin repository
- UNICA