Published July 15, 2019
| Version v1
Journal article
Coherency‐Broken Bragg Filters: Overcoming On‐Chip Rejection Limitations
Contributors
Others:
- Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)) ; Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Physique de Nice (INPHYNI) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N) ; Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Centre de Nanosciences et de Nanotechnologies (C2N) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Institut d'électronique fondamentale (IEF) ; Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Description
Abstract Selective optical filters with high rejection levels are of fundamental importance for a wide range of advanced photonic circuits. However, the implementation of high‐rejection on‐chip optical filters is seriously hampered by phase errors arising from fabrication imperfections. Due to coherent interactions, unwanted phase‐shifts result in detrimental destructive interferences that distort the filter response, whatever the chosen strategy (resonators, interferometers, Bragg filters, etc.). State‐of‐the‐art high‐rejection filters partially circumvent the sensitivity to phase errors by means of active tuning, complicating device fabrication and operation. Here, a new approach based on coherency‐broken Bragg filters is proposed to overcome this fundamental limitation. Non‐coherent interaction among modal‐engineered waveguide Bragg gratings separated by single‐mode waveguides is exploited to yield effective cascading, even in the presence of phase errors. This technologically independent approach allows seamless combination of filter stages with moderate performance free of active control, providing a dramatic increase of on‐chip rejection. Based on this concept, on‐chip non‐coherent cascading of Si Bragg filters is experimentally demonstrated, achieving a light rejection exceeding 80 dB, the largest value reported for an all‐passive silicon filter.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://universite-paris-saclay.hal.science/hal-04457185
- URN
- urn:oai:HAL:hal-04457185v1
Origin repository
- Origin repository
- UNICA