Published 2009
| Version v1
Conference paper
Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets
Contributors
Others:
- Analysis and Simulation of Biomedical Images (ASCLEPIOS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Centre de Mathématiques et de Leurs Applications (CMLA) ; École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- Scientific Computing and Imaging Institute (SCI Institute) ; University of Utah
- Yang
- Guang-Zhong and Hawkes
- David and Rueckert
- Daniel and Noble
- Alison and Taylor
- Chris
Description
We propose a new methodology to analyze the anatomical variability of a set of longitudinal data (population scanned at several ages). This method accounts not only for the usual 3D anatomical variability (geometry of structures), but also for possible changes in the dynamics of evolution of the structures. It does not require that subjects are scanned the same number of times or at the same ages. First a regression model infers a continuous evolution of shapes from a set of observations of the same subject. Second, spatiotemporal registrations deform jointly (1) the geometry of the evolving structure via 3D deformations and (2) the dynamics of evolution via time change functions. Third, we infer from a population a prototype scenario of evolution and its 4D variability. Our method is used to analyze the morphological evolution of 2D profiles of hominids skulls and to analyze brain growth from amygdala of autistics, developmental delay and control children.
Abstract
PMID: 20426000Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/inria-00616113
- URN
- urn:oai:HAL:inria-00616113v1
Origin repository
- Origin repository
- UNICA