Published March 20, 2018
| Version v1
Journal article
An Analysis of Stochastic Jovian Oscillation Excitation by Moist Convection
Contributors
Others:
- NMSU, Dept Astron, Las Cruces, NM USA
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- ANR-15-CE31-0014,JOVIAL,Jupiter : Oscillations en Vitesse radiale par ImAgerie multi Longitudes(2015)
Description
Recent observations of Jupiter have suggested the existence of global oscillatory modes at millihertz frequencies, yet the source mechanism responsible for driving these modes is still unknown. However, the energies necessary to produce observable surface oscillations have been predicted. Here we investigate if moist convection in Jupiter's upper atmosphere can be responsible for driving the global oscillations and what moist convective energy requirements are necessary to achieve these theoretical mode energies and surface amplitudes. We begin by creating a one-dimensional moist convective cloud model and find that the available kinetic energy of the rising cloud column falls below theoretical estimates of oscillations energies. That is, mode excitation cannot occur with a single storm eruption. We then explore stochastic excitation scenarios of the oscillations by moist convective storms. We find that mode energies and amplitudes can reach theoretical estimates if the storm energy available to the modes is more than just kinetic. In order for the modes to be excited, we find that they require 5 × 10 27 to 10 28 erg per day. However, even for a large storm eruption each day, the available kinetic energy from the storms falls two orders of magnitude short of the required driving energy. Although our models may oversimplify the true complexity of the coupling between Jovian storms and global oscillations, our findings reveal that enough thermal energy is associated with moist convection to drive the modes, should it be available to them.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03516983
- URN
- urn:oai:HAL:hal-03516983v1
Origin repository
- Origin repository
- UNICA