Published June 9, 2018 | Version v1
Journal article

A de novo approach to disentangle partner identity and function in holobiont systems

Others:
Sorbonne Université (SU)
Université Pierre et Marie Curie - Paris 6 - UFR de Médecine Pierre et Marie Curie (UPMC) ; Université Pierre et Marie Curie - Paris 6 (UPMC)
Scalable, Optimized and Parallel Algorithms for Genomics (GenScale) ; Inria Rennes – Bretagne Atlantique ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7) ; Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) ; Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) ; Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Station biologique de Roscoff (SBR) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Genoscope - Centre national de séquençage [Evry] (GENOSCOPE) ; Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Génomique métabolique (UMR 8030) ; Genoscope - Centre national de séquençage [Evry] (GENOSCOPE) ; Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ)
Analyse des Données à Haut Débit en Génomique (ADHDG) ; Evolution Paris Seine ; Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)

Description

Background:Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic challenges. The production of chimeric sequences and our inability to distinguish the taxonomic origins of the sequences produced are inherent and recurrent difficulties in de novo assembly analyses. As the study of holobiont meta-transcriptomes is affected by challenges invoked above, we propose an innovative bioinformatic approach to tackle such difficulties and tested it on marine models as a proof of concept.Results:We considered three holobiont models, of which two transcriptomes were previously published and a yetunpublished transcriptome, to analyze and sort their raw reads using Short Read Connector, a k-mer based similaritymethod. Before assembly, we thus defined four distinct categories for each holobiont meta-transcriptome: host reads,symbiont reads, shared reads, and unassigned reads. Afterwards, we observed that independent de novo assemblies foreach category led to a diminution of the number of chimeras compared to classical assembly methods. Moreover, theseparation of each partner' s transcriptome offered the independent and comparative exploration of their functional diversity in the holobiont. Finally, our strategy allowed to propose new functional annotations for two well-studied holobionts (a Cnidaria-Dinophyta, a Porifera-Bacteria) and a first meta-transcriptome from a planktonic Radiolaria-Dinophyta system forming widespread symbiotic association for which our knowledge is considerably limited.Conclusions:In contrast to classical assembly approaches, our bioinformatic strategy generates less de novo assembled chimera and allows biologists to study separately host and symbiont data from a holobiont mixture. The pre-assembly separation of reads using an efficient tool as Short Read Connector is an effective way to tackle meta-transcriptomic challenges and offers bright perpectives to study holobiont systems composed of either well-studied or poorly characterized symbiotic lineages and ultimately expand our knowledge about these associations.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023