The inner circumstellar dust of the red supergiant Antares as seen with VLT/SPHERE/ZIMPOL
- Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Description
The processes by which red supergiants lose mass are not fully understood thus-far and their mass-loss rates lack theoretical constraints. The ambient surroundings of the nearby M0.5 Iab star Antares offer an ideal environment to obtain detailed empirical information on the outflow properties at its onset, and hence indirectly, on the mode(s) of mass-loss. We present and analyse optical VLT/SPHERE/ZIMPOL polarimetric imaging with angular resolution down to 23 milliarcsec, sufficient to spatially resolve both the stellar disc and its direct surroundings. We detect a conspicuous feature in polarized intensity that we identify as a clump containing dust, which we characterize through 3D radiative transfer modelling. The clump is positioned behind the plane of the sky, therefore has been released from the backside of the star, and its inner edge is only 0.3 stellar radii above the surface. The current dust mass in the clump is $1.3^{+0.2}_{-1.0} \times 10^{-8} \, \mathrm{M}_{\odot }$ , though its proximity to the star implies that dust nucleation is probably still ongoing. The ejection of clumps of gas and dust makes a non-negligible contribution to the total mass lost from the star that could possibly be linked to localized surface activity such as convective motions or non-radial pulsations.
Abstract
International audience
Additional details
- URL
- https://hal-insu.archives-ouvertes.fr/insu-03713789
- URN
- urn:oai:HAL:insu-03713789v1
- Origin repository
- UNICA