Published May 2, 2019
| Version v1
Journal article
The non-linear sewing lemma I : weak formulation
Creators
Contributors
Others:
- Institut de Mathématiques de Toulouse UMR5219 (IMT) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145) ; Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)
- TO Simulate and CAlibrate stochastic models (TOSCA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Institut Élie Cartan de Lorraine (IECL) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- The authors are grateful to the CIRM (Marseille, France) for its kind hospitality with the Research-in-Pair program.
Description
We introduce a new framework to deal with rough differential equations based on flows and their approximations. Our main result is to prove that measurable flows exist under weak conditions, even solutions to the corresponding rough differential equations are not unique. We show that under additional conditions of the approximation, there exists a unique Lipschitz flow. Then, a perturbation formula is given. Finally, we link our approach to the additive, multiplicative sewing lemmas and the rough Euler scheme.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01716945
- URN
- urn:oai:HAL:hal-01716945v5
Origin repository
- Origin repository
- UNICA