Published January 15, 2020 | Version v1
Publication

Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds

Description

The aim of this paper is to show the existence and attainability of Karush-Kuhn-Tucker optimality conditions for weakly efficient Pareto points for vector equilibrium problems with the addition of constraints in the novel context of Hadamard manifolds, as opposed to the classical examples of Banach, normed or Hausdorff spaces. More specifically, classical necessary and sufficient conditions for weakly efficient Pareto points to the constrained vector optimization problem are presented. The results described in this article generalize results obtained by Gong (2008) and Wei and Gong (2010) and Feng and Qiu (2014) from Hausdorff topological vector spaces, real normed spaces, and real Banach spaces to Hadamard manifolds, respectively. This is done using a notion of Riemannian symmetric spaces of a noncompact type as special Hadarmard manifolds.

Abstract

Ministerio de Economia, Industria y Competitividad (MINECO). España

Additional details

Identifiers

URL
https://idus.us.es/handle//11441/91651
URN
urn:oai:idus.us.es:11441/91651

Origin repository

Origin repository
USE