Published 2013
| Version v1
Journal article
Pattern identification and characterization reveal permutations of organs as a key genetically controlled property of post-meristematic phyllotaxis
Contributors
Others:
- Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Description
Abstract In vascular plants, the arrangement of organs around the stem generates geometric patterns called phyllotaxis. In the model plant, Arabidopsis thaliana, as in the majority of species, single organs are initiated successively at a divergence angle from the previous organ close to the canonical angle of 137.5°, producing a Fibonacci spiral. Given that little is known about the robustness of these geometric arrangements, we undertook to characterize phyllotaxis by measuring divergence angles between organs along the stems of wild-type and specific mutant plants with obvious defects in phyllotaxis. Sequences of measured divergence angles exhibit segments of non-canonical angles in both genotypes, albeit to a far greater extent in the mutant. We thus designed a pipeline of methods for analyzing these perturbations. The latent structure models used in this pipeline combine a non-observable model representing perturbation patterns (either a variable-order Markov chain or a combinatorial model) with von Mises distributions representing divergence angle uncertainty. We show that the segments of non-canonical angles in both wild-type and mutant plants can be explained by permutations in the order of insertion along the stem of two or three consecutive organs. The number of successive organs between two permutations reveals specific patterns that depend on the nature of the preceding permutation (2- or 3-permutation). We also highlight significant individual deviations from 137.5° in the level of baseline segments and a marked relationship between permutation of organs and defects in the elongation of the internodes between these organs. These results demonstrate that permutations are an intrinsic property of spiral phyllotaxis and that their occurrence is genetically regulated.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-00859831
- URN
- urn:oai:HAL:hal-00859831v1
Origin repository
- Origin repository
- UNICA