Published September 23, 2022 | Version v1
Journal article

Cryo–electron microscopy unveils unique structural features of the human Kir2.1 channel

Others:
Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC) ; Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)
Biotechnologie et signalisation cellulaire (BSC) ; Université de Strasbourg (UNISTRA)-Institut de recherche de l'Ecole de biotechnologie de Strasbourg (IREBS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de PhysioMédecine Moléculaire (LP2M) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI) ; Institut Pasteur [Paris] (IP)
Biologie Moléculaire Structurale et Processus Infectieux (CNRS UMR3528) ; Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de biologie et pharmacologie appliquée (LBPA) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
This work was supported by AFM-Téléthon #23207 for S.B. and C.V.-B., AFM-Téléthon #23210 for C.A.H.F., Ecole DoctoraleED515 Sorbonne Université for D.Z. and C.F., and EQUIPEX CACSICE ANR-11-EQPX-0008 (C.V.-B.). The project has received funding from the European Union's Horizon Europe Research and Innovation Program under grant agreement no. 101026386.
ANR-11-EQPX-0008,CACSICE,Centre d'analyse de systèmes complexes dans les environnements complexes(2011)
European Project: 101026386,H2020-MSCA-IF-2020,KIRPAS(2022)

Description

We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen's syndrome. The structural analysis (cryo–electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP 2 -binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP 2 . Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.

Abstract

International audience

Additional details

Created:
February 22, 2023
Modified:
November 29, 2023