Inversion number of an oriented graph and related parameters
- Others:
- Department of Mathematics and Computer Science [Odense] (IMADA) ; University of Southern Denmark (SDU)
- Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- This research was supported by the Independent Research Fund Denmark under grant number DFF 7014-00037B, and by the french Agence Nationale de la Recherche under contract Digraphs ANR-19-CE48-0013-01. This work was done while Joergen Bang-Jensen was visiting team Coati, I3S and INRIA Sophia Antipolis. Hospitality and financial support is gratefully acknowledged. Ce travail a bénéficié d'une aide du gouvernement français, gérée par l'Agence Nationale de la Recherche au titre du projet Investissements d'Avenir UCAJEDI portant la référence no ANR-15-IDEX-01. This work was done while Jonas Costa Ferreira da Silva was spending his second year of PhD as "sandwich" in team Coati, I3S and INRIA Sophia Antipolis.
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Description
Let D be an oriented graph. The inversion of a set X of vertices in D consists in reversing the direction of all arcs with both ends in X. The inversion number of D, denoted by inv(D), is the minimum number of inversions needed to make D acyclic. Denoting by τ (D), τ (D), and ν(D) the cycle transversal number, the cycle arc-transversal number and the cycle packing number of D respectively, one shows that inv(D) ≤ τ (D), inv(D) ≤ 2τ (D) and there exists a function g such that inv(D) ≤ g(ν(D)). We conjecture that for any two oriented graphs L and R, inv(L → R) = inv(L) + inv(R) where L → R is the dijoin of L and R. This would imply that the first two inequalities are tight. We prove this conjecture when inv(L) ≤ 1 and inv(R) ≤ 2 and when inv(L) = inv(R) = 2 and L and R are strongly connected. We also show that the function g of the third inequality satisfies g(1) ≤ 4. We then consider the complexity of deciding whether inv(D) ≤ k for a given oriented graph D. We show that it is NP-complete for k = 1, which together with the above conjecture would imply that it is NP-complete for every k. This contrasts with a result of Belkhechine et al. [6] which states that deciding whether inv(T) ≤ k for a given tournament T is polynomial-time solvable.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03035419
- URN
- urn:oai:HAL:hal-03035419v1
- Origin repository
- UNICA