The Geometry of Sparse Analysis Regularization
- Creators
- Dupuis, Xavier
- Vaiter, Samuel
- Others:
- Institut de Mathématiques de Bourgogne [Dijon] (IMB) ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Agence Nationale de la Recherche (ANR)ANR-18-CE40-0005Projet ANER RAGAG048CVCRB-2018ZZAgence Nationale de la Recherche (ANR)ANR-18-CE40-0005
- ANR-18-CE40-0005,GraVa,Méthodes variationnelles pour les signaux sur graphe(2018)
Description
Analysis sparsity is a common prior in inverse problem or machine learning including special cases such as total variation regularization, edge Lasso, and fused Lasso. We study the geometry of the solution set (a polyhedron) of the analysis regularization (with data fidelity term) when it is not reduced to a singleton without any assumption of the analysis dictionary nor the degradation operator. In contrast with most theoretical work, we do not focus on giving uniqueness and/or stability results but rather describe a worst-case scenario where the solution set can be big in terms of dimension. Leveraging a fine analysis of the sublevel set of the regularizer itself, we draw a connection between support of a solution and the minimal face containing it and, in particular, prove that extreme points can be recovered thanks to an algebraic test. Moreover, we draw a connection between the sign pattern of a solution and the ambient dimension of the smallest face containing it. Finally, we show that any arbitrary subpolyhedra of the level set can be seen as a solution set of sparse analysis regularization with explicit parameters.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04411389
- URN
- urn:oai:HAL:hal-04411389v1
- Origin repository
- UNICA