Non-parametric estimator of a multivariate madogram for missing-data and extreme value framework
- Others:
- Littoral, Environment: MOdels and Numerics (LEMON) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut Montpelliérain Alexander Grothendieck (IMAG) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Université de Montpellier (UM)
- Centre National de la Recherche Scientifique (CNRS)
Description
Modéliser la dépendance entre maxima est un sujet d'intérêt dans les domaines d'application d'analyse du risque. Dans cet objectif, la copule de valeurs extrêmes, caractérisée par le madogramme, peut être utilisée comme une description de la structure de dépendance. Concrètement, la famille des distributions à valeurs extrêmes est très riche et survient naturellement comme la limite composante par composante des maxima préalablement normalisés. Dans cette présentation, nous étudions l'estimation non paramétrique du madogramme lorsque les données sont absentes complètement au hasard. Nous fournissons un théorème de la limite centrale fonctionnelle pour l'estimateur considéré du madogramme, correctement normalisé, vers un processus Gaussien tendu pour lequel la fonction de covariance dépend des probabilités de perte de la donnée. L'expression explicite de la variance asymptotique est aussi donnée. Nos résultats sont illustrés dans une étude numérique lorsque la taille d'échantillon est finie.
Additional details
- URL
- https://hal.science/hal-03888384
- URN
- urn:oai:HAL:hal-03888384v1
- Origin repository
- UNICA