Published October 2, 2023
| Version v1
Conference paper
Exploring the Road Graph in Trajectory Forecasting for Autonomous Driving
Creators
Contributors
Others:
- Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
As Deep Learning tackles complex tasks like trajectory forecasting in autonomous vehicles, a number of new challenges emerge. In particular, autonomous driving requires accounting for vast a priori knowledge in the form of HDMaps. Graph representations have emerged as the most convenient representation for this complex information. Nevertheless, little work has gone into studying how this road graph should be constructed and how it influences forecasting solutions. In this paper, we explore the impact of spatial resolution, the graph's relation to trajectory outputs and how knowledge can be embedded into the graph. To this end, we propose thorough experiments for 2 graph-based frameworks (PGP [6], LAformer [14]) over the nuScenes [1] dataset, with additional experiments on the LaneGCN [13] framework and Argoverse 1.1 [2] dataset.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04385182
- URN
- urn:oai:HAL:hal-04385182v1
Origin repository
- Origin repository
- UNICA