Online deconvolution for industrial hyperspectral imaging systems
- Others:
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Guilin University of Electronic Technology
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- FUI AAP 2015 Trispirabois Project, the Conseil Régional de Lorraine, the GDR ISIS CNRS, and the CNRS Imag'in ALOhA Project.
- The work of J.Chen was supported in part by National Natural Science Foundation of China (NSFC) under grant 61671382 and in part by NSF of Shenzhen under grant JCYJ2017030155315873
Description
This paper proposes a hyperspectral image deconvolution algorithm for the online restoration of hyperspectral images as provided by wiskbroom and pushbroom scanning systems. We introduce a least-mean-squares (LMS)-based framework accounting for the convolution kernel non-causality and including non-quadratic (zero attracting and piece-wise constant) regularization terms. This results in the so-called sliding block regularized LMS (SBR-LMS) which maintains a linear complexity compatible with real-time processing in industrial applications. A model for the algorithm mean and mean-squares transient behavior is derived and the stability condition is studied. Experiments are conducted to assess the role of each hyper-parameter. A key feature of the proposed SBR-LMS is that it outperforms standard approaches in low SNR scenarios such as ultra-fast scanning.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01801272
- URN
- urn:oai:HAL:hal-01801272v3
- Origin repository
- UNICA