Published February 10, 2023 | Version v1
Publication

Model-based Clustering with Missing Not At Random Data

Others:
Université Côte d'Azur (UCA)
Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Université de Rennes (UNIV-RENNES)
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
Centre National de la Recherche Scientifique (CNRS)
Centre de Recherche en Economie et Statistique [Bruz] (CREST) ; Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
Université Lille Nord (France)
MOdel for Data Analysis and Learning (MODAL) ; Laboratoire Paul Painlevé - UMR 8524 (LPP) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS) ; Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)
Sorbonne Université (SU)
Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN) ; CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris-Saclay
Statistique mathématique et apprentissage (CELESTE) ; Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut Desbrest de santé publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Médecine de précision par intégration de données et inférence causale (PREMEDICAL) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Desbrest de santé publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Nantes Université (Nantes Univ)
Institut du Thorax [Nantes]
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
ANR-16-IDEX-0006,MUSE,MUSE(2016)

Description

Model-based unsupervised learning, as any learning task, stalls as soon asmissing data occurs. This is even more true when the missing data are infor-mative, or said missing not at random (MNAR). In this paper, we proposemodel-based clustering algorithms designed to handle very general typesof missing data, including MNAR data. To do so, we introduce a mixturemodel for different types of data (continuous, count, categorical and mixed)to jointly model the data distribution and the MNAR mechanism, remainingvigilant to the degrees of freedom of each. Eight different MNAR modelswhich depend on the class membership and/or on the values of the missingvariables themselves are proposed. For a particular type of MNAR mod-els, for which the missingness depends on the class membership, we showthat the statistical inference can be carried out on the data matrix concate-nated with the missing mask considering a MAR mechanism instead; thisspecifically underlines the versatility of the studied MNAR models. Then,we establish sufficient conditions for identifiability of parameters of both thedata distribution and the mechanism. Regardless of the type of data and themechanism, we propose to perform clustering using EM or stochastic EMalgorithms specially developed for the purpose. Finally, we assess the nu-merical performances of the proposed methods on synthetic data and on thereal medical registry TraumaBase® as well.

Additional details

Created:
February 22, 2023
Modified:
November 29, 2023