Curvilinear DGTD method for nanophotonics applications
- Creators
- Viquerat, Jonathan
- Scheid, Claire
- Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Classical finite element methods rely on tessellations composed of straight-edged elements mapped linearly from a reference element, on domains which physical boundaries are indifferently straight or curved. This approximation represents serious hindrance for high-order methods, since they limit the precision of the spatial discretization to second order. Thus, exploiting an enhanced representation of the physical geometry of a considered problem is in agreement with the natural procedure of high-order methods, such as the discontinuous Galerkin method. In the latter framework, we propose and validate an implementation of a high-order mapping for tetrahedra, and then focus on specific nanophotonics setups to assess the gains of the method in terms of memory and performances.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01403876
- URN
- urn:oai:HAL:hal-01403876v1
- Origin repository
- UNICA