Published January 25, 2010
| Version v1
Journal article
Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem
Contributors
Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Informatics [Bergen] (UiB) ; University of Bergen (UiB)
- Department of Computer Science ; Royal Holloway [University of London] (RHUL)
- Institute of Mathematical Sciences [Chennai] (IMSc)
Description
An out-tree T is an oriented tree with only one vertex of in-degree zero. A vertex x of T is internal if its out-degree is positive. We design randomized and deterministic algorithms for deciding whether an input digraph contains a given out-tree with k vertices. The algorithms are of running time O*(5.704k) and O*(6.14k), respectively. We apply the deterministic algorithm to obtain a deterministic algorithm of runtime O*(ck), where c is a constant, for deciding whether an input digraph contains a spanning out-tree with at least k internal vertices. This answers in affirmative a question of Gutin, Razgon and Kim (Proc. AAIM'08) [9]
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00504734
- URN
- urn:oai:HAL:hal-00504734v1
Origin repository
- Origin repository
- UNICA