Published February 2019
| Version v1
Journal article
A Regularization Framework for Learning over Multitask Graphs
Contributors
Others:
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-CE48-0002,DARLING,Adaptation et apprentissage distribués pour les signaux sur graphe(2019)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
This letter proposes a general regularization framework for inference over multitask networks. The optimization approach relies on minimizing a global cost consisting of the aggregate sum of individual costs regularized by a term that allows to incorporate global information about the graph structure and the individual parameter vectors into the solution of the inference problem. An adaptive strategy, which responds to streaming data and employs stochastic approximations in place of actual gradient vectors, is devised and studied. Methods allowing the distributed implementation of the regularization step are also discussed. The work shows how to blend real-time adaptation with graph filtering and a generalized regularization framework to result in a graph diffusion strategy for distributed learning over multitask networks.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03634201
- URN
- urn:oai:HAL:hal-03634201v1
Origin repository
- Origin repository
- UNICA