Published July 10, 2022
| Version v1
Conference paper
Impact of the Pre-Processing in AI-Based Classification at Mm-Waves
- Others:
- Laboratoire d'Electronique, Antennes et Télécommunications (LEAT) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut FRESNEL (FRESNEL) ; Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Description
Based on various applications involving millimeter- wave (mm-wave) imaging, we highlight the importance of processing the measurements prior to their classification with Artificial Intelligence (AI) algorithms. The key point for enabling a good classification accuracy is to obtain the same structure for the training and the test datasets. Throughout the paper, we discuss a set of pre-processing methods, ranging from 2-DimensionalFast Fourier Transform (2D-FFT) with or without segmentation to 3-Dimensional Fast Fourier Transform (3D-FFT), and their influence on the final classification results.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03710922
- URN
- urn:oai:HAL:hal-03710922v1
- Origin repository
- UNICA