Published June 7, 2008
| Version v1
Conference paper
The Most General Conservation Law for a Cellular Automaton
- Creators
- Formenti, Enrico
- Kari, Jarkko
- Taati, Siamak
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MC3 ; Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Departement of Mathematics, University of Turku (FUNDIM) ; University of Turku
- Turku Centre for Computer Science ; Åbo Akademi University [Turku]-University of Turku
- ANR-05-BLAN-0374,Sycomore,Systèmes complexes et modèles de calcul(2005)
Description
We study the group-valued and semigroup-valued conservation laws in cellular automata (CA). We provide examples to distinguish between semigroup-valued, group-valued and real-valued conservation laws. We prove that, even in one-dimensional case, it is undecidable if a CA has any non-trivial conservation law of each type. For a fixed range, each CA has a most general (group-valued or semigroup-valued) conservation law, encapsulating all conservation laws of that range. For one-dimensional CA the semigroup corresponding to such a most general conservation law has an effectively constructible finite presentation, while for higher-dimensional ones no such effective construction exists.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00310402
- URN
- urn:oai:HAL:hal-00310402v1
- Origin repository
- UNICA