Published September 25, 2023 | Version v1
Publication

Critical dynamics of long-range quantum disordered systems

Others:
Department of Physics, National University of Singapore
MajuLab ; National University of Singapore (NUS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Centre for Quantum Technologies [Singapore] (CQT) ; National University of Singapore (NUS)
Information et Chaos Quantiques (LPT) ; Laboratoire de Physique Théorique (LPT) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Singapore Ministry of Education Academic Research Fund Tier I (WBS No. R-144-000-437-114)
ANR-17-EURE-0009,NanoX,Science et Ingénierie à l'Echelle Nano(2017)
ANR-17-CE30-0024,COCOA,Contrôle de systèmes complexes d'atomes froids(2017)
ANR-18-CE30-0017,MANYLOK,Localisation à N corps avec le Kicked Rotor(2018)
ANR-19-CE30-0013,GLADYS,De la nature vitreuse des systèmes quantiques désordonnés(2019)

Description

Long-range hoppings in quantum disordered systems are known to yield quantum multifractality, whose features can go beyond the characteristic properties associated with an Anderson transition. Indeed, critical dynamics of long-range quantum systems can exhibit anomalous dynamical behaviours distinct from those at the Anderson transition in finite dimensions. In this paper, we propose a phenomenological model of wave packet expansion in long-range hopping systems. We consider both their multifractal properties and the algebraic fat tails induced by the long-range hoppings. Using this model, we analytically derive the dynamics of moments and Inverse Participation Ratios of the time-evolving wave packets, in connection with the multifractal dimension of the system. To validate our predictions, we perform numerical simulations of a Floquet model that is analogous to the power law random banded matrix ensemble. Unlike the Anderson transition in finite dimensions, the dynamics of such systems cannot be adequately described by a single parameter scaling law that solely depends on time. Instead, it becomes crucial to establish scaling laws involving both the finite-size and the time. Explicit scaling laws for the observables under consideration are presented. Our findings are of considerable interest towards applications in the fields of many-body localization and Anderson localization on random graphs, where long-range effects arise due to the inherent topology of the Hilbert space.

Additional details

Created:
October 11, 2023
Modified:
November 28, 2023