Published 2012
| Version v1
Journal article
Anomalous diffusion for a class of systems with two conserved quantities
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS) ; École des Ponts ParisTech (ENPC)
- Methods and engineering of multiscale computing from atom to continuum (MICMAC) ; Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC)
Description
We introduce a class of one-dimensional deterministic models of energy- volume conserving interfaces. Numerical simulations show that these dynamics are genuinely super-diffusive. We then modify the dynamics by adding a conservative stochastic noise so that it becomes ergodic. A system of conservation laws are derived as hydrodynamic limits of the modified dynamics. Numerical evidence shows that these models are still super-diffusive. This is proven rigorously for harmonic potentials.
Additional details
Identifiers
- URL
- https://ens-lyon.hal.science/ensl-00909792
- URN
- urn:oai:HAL:ensl-00909792v1
Origin repository
- Origin repository
- UNICA