Circuits in graphs through a prescribed set of ordered vertices
- Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Description
A circuit in a simple undirected graph G=(V,E) is a sequence of vertices {v_1,v_2,...,v_{k+1}} such that v_1=v_{k+1} and {v_i,v_{i+1}} in E for i=1,...,k. A circuit C is said to be edge-simple if no edge of G is used twice in C. In this article we study the following problem: which is the largest integer k such that, given any subset of k ordered vertices of a graph G, there exists an edge-simple circuit visiting the k vertices in the prescribed order? We first study the case when G has maximum degree at most 3, establishing the value of k for several subcases, such as when G is planar or 3-vertex-connected. Our main result is that k=10 in infinite square grids. To prove this, we introduce a methodology based on the notion of core graph, in order to reduce the number of possible vertex configurations, and then we test each one of the resulting configurations with an Integer Linear Program (ILP) solver.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00585561
- URN
- urn:oai:HAL:inria-00585561v1
- Origin repository
- UNICA