Published March 11, 2022 | Version v1
Publication

DISCERNER: Dynamic selection of resource manager in hyper-scale cloud-computing data centres

Description

Data centres constitute the engine of the Internet, and run a major portion of large web and mobile applications, content delivery and sharing platforms, and Cloud-computing business models. The high performance of such infrastructures is therefore critical for their correct functioning. This work focuses on the improvement of data-centre performance by dynamically switching the main data-centre governance software system: the resource manager. Instead of focusing on the development of new resource-managing models as soon as new workloads and patterns appear, we propose DISCERNER, a decision-theory model that can learn from numerous data-centre execution logs to determine which existing resource-managing model may optimise the overall performance for a given time period. Such a decision-theory system employs a classic machine-learning classifier to make real-time decisions based on past execution logs and on the current data-centre operational situation. A set of extensive and industry-guided experiments has been simulated by a validated data-centre simulation tool. The results obtained show that the values of key performance indicators may be improved by at least 20% in realistic scenarios.

Abstract

Ministerio de Ciencia e Innovación RTI2018-098062-A-I00

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023