A 3D Parsimonious Finite-volume Frequency-domain Method for Elastic Wave Modelling
- Creators
- Etienne, V.
- Brossier, R.
- Virieux, Jean
- Operto, S.
- Others:
- Géoazur (GEOAZUR 6526) ; Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Géophysique Interne et Tectonophysique (LGIT) ; Observatoire des Sciences de l'Univers de Grenoble (OSUG) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Centre National de la Recherche Scientifique (CNRS)
- SEISCOPE
Description
We present the finite-volume (FV or P0 Galerkin Discontinuous) formulation applied to the 3D visco-elastic wave equation in the frequency domain. This work is motivated within the framework of global offset seismic imaging by full waveform inversion. Concerning the direct problem, the FV formulation leads to the resolution of a large and sparse system of linear equations. This system can be solved with a direct solver particuraly suitable to tomographic applications since only one matrix factorization is performed per frequency for all the right hand terms (i.e. the sources). On the other hand, direct solvers require large amount of RAM and therefore restrict the possible field of realistic applications. The memory complexity of the proposed method implies reduced size models spanning over several wavelengths. In order to push back this limitation, the use of a higher order of interpolation, as Pk Galerkin Discontinuous, should decrease the discretization step allowing coarser meshes leading to a possible managing situation. Furthermore, the use of a domain decomposition method might reduce significantly the memory requirements of the FV frequency domain approach. ...
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00408382
- URN
- urn:oai:HAL:hal-00408382v1
- Origin repository
- UNICA