Published October 22, 2020
| Version v1
Publication
On neuromorphic spiking architectures for asynchronous STDP memristive systems
Contributors
Others:
- Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
- Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones
- European Union (UE)
- Ministerio de Educación y Ciencia (MEC). España
- Ministerio de Economía y Competitividad (MINECO). España
- Junta de Andalucía
Description
Neuromorphic circuits and systems techniques have great potential for exploiting novel nanotechnology devices, which suffer from great parametric spread and high defect rate. In this paper we explore some potential ways of building neural network systems for sophisticated pattern recognition tasks using memristors. We will focus on spiking signal coding because of its energy and information coding efficiency, and concentrate on Convolutional Neural Networks because of their good scaling behavior, both in terms of number of synapses and temporal processing delay. We propose asynchronous architectures that exploit memristive synapses with specially designed neurons that allow for arbitrary scalability as well as STDP learning. We present some behavioral simulation results for small neural arrays using electrical circuit simulators, and system level spike processing results on human detection using a custom made event based simulator.
Abstract
European Union 216777 (NABAB)Abstract
Ministerio de Educación y Ciencia TEC2006-11730-C03-01Abstract
Ministerio de Economía y Competitividad TEC2009-10639-C04-01Abstract
Junta de Andalucía P06-TIC-01417Additional details
Identifiers
- URL
- https://idus.us.es/handle//11441/102149
- URN
- urn:oai:idus.us.es:11441/102149
Origin repository
- Origin repository
- USE