Published October 3, 2005
| Version v1
Conference paper
Exploratory analysis of cancer SAGE data
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institute of Developmental Biology and Cancer (IBDC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Using several analyse techniques for the hierarchical clustering of a SAGE expression dataset of 822 tags from 74 tissue samples (normal and cancer) we show that cleaning the dataset (tags and experiments) is critical and that attribution of a tag to a gene is not easy. Comparison of cancers from various tissues is a difficult task as tissue samples cluster according to tissue origin and not as cancer or normal.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01154853
- URN
- urn:oai:HAL:hal-01154853v1
- Origin repository
- UNICA