The Strong Gravitational Lens Finding Challenge
- Creators
- Metcalf, R. Benton
- Meneghetti, M.
- Avestruz, Camille
- Bellagamba, Fabio
- Bom, Clécio R.
- Bertin, Emmanuel
- Cabanac, Rémi
- Courbin, F.
- Davies, Andrew
- Decencière, Etienne
- Flamary, Rémi
- Gavazzi, Raphael
- Geiger, Mario
- Hartley, Philippa
- Huertas-Company, Marc
- Jackson, Neal
- Jacobs, C.
- Jullo, Eric
- Kneib, Jean-Paul
- Koopmans, Léon V.E.
- Lanusse, François
- Li, Chun-Liang
- Ma, Quanbin
- Makler, Martin
- Li, Nan
- Lightman, Matthew
- Petrillo, Carlo Enrico
- Serjeant, Stephen
- Schäfer, Christoph
- Sonnenfeld, Alessandro
- Tagore, Amit
- Tortora, Crescenzo
- Tuccillo, Diego
- Valentín, Manuel B.
- Velasco-Forero, Santiago
- Verdoes Kleijn, Gijs A.
- Vernardos, Georgios
- Others:
- Institut d'Astrophysique de Paris (IAP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Institut de recherche en astrophysique et planétologie (IRAP) ; Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- École des Mines de Paris
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Astrophysique de Marseille (LAM) ; Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA (UMR_8112)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Description
Large-scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of images, and deriving scientific results from them will require quantifying the efficiency and bias of any search method. To achieve these objectives automated methods must be developed. Because gravitational lenses are rare objects, reducing false positives will be particularly important. We present a description and results of an open gravitational lens finding challenge. Participants were asked to classify 100 000 candidate objects as to whether they were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a single false-positive identification. This is significantly better than direct inspection by humans was able to do. Having multi-band, ground based data is found to be better for this purpose than single-band space based data with lower noise and higher resolution, suggesting that multi-colour data is crucial. Multi-band space based data will be superior to ground based data. The most difficult challenge for a lens finder is differentiating between rare, irregular and ring-like face-on galaxies and true gravitational lenses. The degree to which the efficiency and biases of lens finders can be quantified largely depends on the realism of the simulated data on which the finders are trained.Key words: gravitational lensing: strong / methods: data analysis⋆ Provost's Postdoctoral Scholar at the University of Chicago.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01737876
- URN
- urn:oai:HAL:hal-01737876v1
- Origin repository
- UNICA