High-Content Screening images streaming analysis using the STriGen methodology
Description
One of the techniques that provides systematic insights into biolog ical processes is High-Content Screening (HCS). It measures cells phenotypes simultaneously. When analysing these images, features like fluorescent colour, shape, spatial distribution and interaction between components can be found. STriGen, which works in the real-time environment, leads to the possibility of studying time evolution of these features in real-time. In addition, data stream ing algorithms are able to process flows of data in a fast way. In this article, STriGen (Streaming Triclustering Genetic) algorithm is presented and applied to HCS images. Results have proved that STriGen finds quality triclusters in HCS images, adapts correctly throughout time and is faster than re-computing the triclustering algorithm each time a new data stream image arrives.
Abstract
Ministerio de Economía y Competitividad TIN2017-88209-C2-1-R
Abstract
TIN2017-88209-C2-2-R
Additional details
- URL
- https://idus.us.es/handle//11441/131784
- URN
- urn:oai:idus.us.es:11441/131784
- Origin repository
- USE