Information transmission under random emission constraints
- Creators
- Comets, Francis
- Delarue, François
- Schott, René
- Others:
- Laboratoire de Probabilités et Modèles Aléatoires (LPMA) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Real time and interoperability (TRIO) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Institut Élie Cartan de Lorraine (IECL) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- TRIO
Description
We model the transmission of a message on the complete graph with n vertices and limited resources. The vertices of the graph represent servers that may broadcast the message at random. Each server has a random emission capital that decreases at each emission. Quantities of interest are the number of servers that receive the information before the capital of all the informed servers is exhausted and the exhaustion time. We establish limit theorems (law of large numbers, central limit theorem and large deviation principle), as n tends to infinity, for the proportion of visited vertices before exhaustion and for the total duration. The analysis relies on a construction of the transmission procedure as a dynamical selection of successful nodes in a Galton-Watson tree with respect to the success epochs of the coupon collector problem.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00637304
- URN
- urn:oai:HAL:hal-00637304v2
- Origin repository
- UNICA