Published January 2022
| Version v1
Journal article
Hyperspectral super-resolution accounting for spectral variability: coupled tensor LL1-based recovery and blind unmixing of the unknown super-resolution image
- Others:
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-CE23-0021,LeaFleT,Apprentissage des réseaux de neurones avec des fonctions d'activation flexibles par les méthodes tensorielles(2019)
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
In this paper, we propose to jointly solve the hyperspectral super-resolution problem and the unmixing problem of the underlying super-resolution image using a coupled LL1 block-tensor decomposition. We consider a spectral variability phenomenon occurring between the observed low-resolution images. Exact recovery conditions for the image and mixing factors are provided. We propose two algorithms: an unconstrained one and another one subject to non-negativity constraints, to solve the problems at hand. We showcase performance of the proposed approach on synthetic and real images.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03158076
- URN
- urn:oai:HAL:hal-03158076v2
- Origin repository
- UNICA